Influence of the Electrode Size and Location on the Performance of a CMUT

نویسندگان

  • Baris Bayram
  • Goksen G. Yaralioglu
  • Arif S. Ergun
  • B. T. Khuri-Yakub
  • Edward L. Ginzton
چکیده

The collapse voltage of micromachined capacitive ultrasonic transducers (CMUT) depends on the size, thickness, type, and position of the metal electrode within the membrane. This paper reports the result of a finite element study of this effect. The program (ANSYS 5.7) is used to model a circular membrane on top of a Si substrate covered by a Si3N4 insulation layer. We find that the collapse voltage increases in proportion to the metal thickness for constant membrane thickness. The collapse voltage of a membrane with a thin metal electrode decreases as the metal plate moves closer to the bottom of the membrane; whereas, for electrodes with larger metal thickness, the collapse voltage has a peak intermediate value. Decreasing the outer radius of the metal plate results in an asymptotic increase of the collapse voltage. For a finite metal thickness, an initial decrease in the collapse voltage is seen as the outer radius decreases. The collapse voltages of half-metallized and full-metallized structures are almost equal for typical metal plate thickness. The asymptotic increase of the collapse voltage is seen for ring shaped metal plates as the inner radius is varied from the center to the outer radius. In summary, we find that the influence of the metal electrode on the collapse voltage is a very important parameter in determining optimum performance of a CMUT. Index Terms – Capacitive micromachined ultrasonic transducer, CMUT, collapse voltage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the vanadyl-selective electrodes prepared by sol–gel and PVC membrane techniques

Sol-gel and polymeric membrane electrodes, based on thiacalix[4]arene as a neutral carrier, weresuccessfully developed for the detection of VO2+ in aqueous solutions. The sol-gel and PVCmembrane electrodes exhibited linear response with Nernstian slopes of 29.3 and 28.4 mV perdecade, respectively, within the vanadyl ion concentration ranges from 1.0 × 10-6 to 1.0 × 10-1mol dm-3 and from 1.0 × 1...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

The effect of vertical injection of reactants to the membrane electrode assembly on the performance of a PEM fuel cell

In order to present a new and high performance structure of PEM fuel cell and study the influence of the flow direction and distribution on the rate of reactants diffusion, three novel models of vertical reactant flow injection into the anode and cathode reaction area field have been introduced. They consist of one inlet and two inlets and also a continuous channel. The governing equations on t...

متن کامل

Preparation and Application of Al3+ - Sensor Based On (2Z) — Methyl 2 — ((z) (p-tolylimino) -3-Ethyl —4-0xothiazolidin —5— Ylidene Acetate in PVC Matrix

Al3+-Potentiometric sensor, based on (2Z) -methyl 2- ((z) (p-tolylimino)-3-ethyl -4-oxothiazolidin -5- ylidene) Acetate (MTEOY) as a neutral ionophore, was successfully developed for the detectionof Al3+ in aqueous solutions. The electrode responds to Al3+ ion with a sensitivity of 19.8 ± 0.1 mV/decade over the range 1.0 x 10-8- 1.0 x 10-1 mol LT' and in a pH range of 3.0-9.0. The electrodeshow...

متن کامل

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002